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Otsu reference proposed a criterion for maximizing the between-class variance of
pixel intensity to perform picture thresholding. However, Otsu’s method for image
segmentation is very time-consuming because of the inefficient formulation of the be-
tween-class variance. In this paper, a faster version of Otsu’s method is proposed for
improving the efficiency of computation for the optimal thresholds of an image. First,
a criterion for maximizing a modified between-class variance that is equivalent to the
criterion of maximizing the usual between-class variance is proposed for image segmen-
tation. Next, in accordance with the new criterion, a recursive algorithm is designed to
efficiently find the optimal threshold. This procedure yields the same set of thresholds
as the original method. In addition, the modified between-class variance can be
pre-computed and stored in a look-up table. Our analysis of the new criterion clearly
shows that it takes less computation to compute both the cumulative probability (zeroth
order moment) and the mean (first order moment) of a class, and that determining the
modified between-class variance by accessing a look-up table is quicker than that by
performing mathematical arithmetic operations. For example, the experimental results
of a five-level threshold selection show that our proposed method can reduce down the
processing time from more than one hour by the conventional Otsu’s method to less than
107 seconds.

Keywords: Otsu’s thresholding, image segmentation, picture thresholding, multilevel

thresholding, recursive algorithm

1. INTRODUCTION

Thresholding is an important technique for image segmentation that tries to iden-
tify and extract a target from its background on the basis of the distribution of gray levels
or texture in image objects. Most thresholding techniques are based on the statistics of
the one-dimensional (1D) histogram of gray levels and on the two-dimensional (2D)
co-occurrence matrix of an image. Many 1D thresholding methods have been investi-
gated [1-9]. Locating the thresholds can be proceed in parametric or nonparametric
approaches [1, 4, 13]. In parametric approaches, the gray level distribution of an object
class leads to finding the thresholds. For instance, in Wang and Haralick’s study [5],
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the pixels of an image are first classified as either edge non-edge pixels. According to
their local neighborhoods, edge pixels are then classified as being relatively dark or rela-
tively bright. Next, one histogram is obtained for those edge pixels which are dark and
another for those edge pixels which are bright. The highest peaks of these two histo-
grams are chosen as the thresholds. Moment preserving thresholding is a parametric
method which segments the image based on the condition that the thresholded image has
the same moments as the original image [3]. In nonparametric approaches, the thresh-
olds are obtained in an optimal manner according to some criteria. For instance, Otsu’s
method chooses the optimal thresholds by maximizing the between-class variance with
an exhaustive search [2]. In Pun’s method [7], as modified by Kapur et al. [8], the pic-
ture threshold is found by maximizing the entropy of the histogram of gray levels of the
resulting classes. Other, some 1D thresholding techniques extend from bi-level thresh-
old selection to multilevel threshold selection [1-5]. In contrast to 1D thresholding
methods, 2D methods essentially do image segmentation by using spatial information in
an image [10-15]. Kirby and Rosenfeld proposed a 2D thresholding method that simul-
taneously considers both the pixel gray level and the local statistics of its neighboring
pixels [12]. One particular 2D method is entropic thresholding, which makes use of spa-
tial entropy to find the optimal thresholds. Abutaleb [13], and Pal and Pal [14] pro-
posed that optimal thresholds can be selected by maximizing the sum of the posterior
entropies of two classes. However, their method is very time-consuming at determining
the 2D total entropy of the resulting two classes. As a result, Chen et al. proposed a
two-stage approach to search for the optimal threshold of 2D entropic thresholding so
that the computation complexity can be reduced to O(L

8/3
) for an image with L gray lev-

els [10]. Recently, Gong et al. [11] designed a recursive algorithm for 2D entropic
thresholding to further reduce the computation complexity to O(L

2
). However, it is still

inefficient to apply this algorithm to 1D multilevel thresholding selection, owing to their
computation of threshold without taking advantage of the recursive structure of entropy
measures.

The Sahoo et al. study on global thresholding, [6] concluded that Otsu’s method was
one of the better threshold selection methods for general real world images with regard to
uniformity and shape measures. However, Otsu’s method uses an exhaustive search to
evaluate the criterion for maximizing the between-class variance. As the number in
classes of an image increases, Otsu’s method takes too much time to be practical for
multilevel threshold selection. To determine the 1D threshold of an image efficiently,
we propose a modified between-class variance for Otsu’s method. The recursive form
of the proposed modified between-class variance will considerably decrease the compu-
tation of summing both the zeroth order moment and the first order moment of the prob-
ability density function up to the kth gray level that will be described in Section 4.
Then, a look-up table is derived from the recursive form of the modified between-class
variance. It is designed to replace the computation of the modified between-class vari-
ance for the 1D multilevel thresholding. Compared to the conventional Otsu’s method
with a recursive form of the between-class variance, our proposed algorithm can increase
the speed of computation by 22 times based on experimental results.

In Section 2, the Otsu’s method for image thresholding is briefly reviewed. In Sec-
tion 3, a modification of Otsu’s thresholding method for 1D multilevel threshold selec-
tion is discussed. In section 4, a fast 1D multilevel thresholding algorithm based on the
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recursive forms of ωk and µ(k) and the look-up table of the modified between-class vari-
ance is described in detail. Section 5 shows the experimental results. Finally, Section
6 gives a brief conclusion.

2. OTSU’S METHOD FOR IMAGE THESHOLDING

An image is a 2D grayscale intensity function, and contains N pixels with gray lev-
els from 1 to L. The number of pixels with gray level i is denoted fi, giving a probabil-
ity of gray level i in an image of

p
i = fi / N. (1)

In the case of bi-level thresholding of an image, the pixels are divided into two
classes, C1 with gray levels [1, …, t] and C2 with gray levels [t+1, …, L]. Then, the
gray level probability distributions for the two classes are

C1: p1/ω1(t), …. pt /ω1 (t) and

C2: pt+1/ω2 (t), pt+2/ω2 (t), … , pL/ω2 (t),

where ω1 (t) = ∑
=

t

1i
p

i (2)

and

ω2 (t) = ∑
+=

L

1ti
p

i. (3)

Also, the means for classes C1 and C2 are

µ1 = ∑
=

t

1i
i pi /ω1 (t) (4)

and

µ
2

= ∑
+=

L

1ti
i pi/ω2 (t). (5)

Let µT be the mean intensity for the whole image. It is easy to show that

ω1µ1+ ω2µ2=µT (6)

ω1+ω2 =1 (7)

Using discriminant analysis, Otsu defined the between-class variance of the thresh-
olded image as [2]
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σB
2=ω1 (µ1- µT)2 +ω2 (µ2 - µT)2. (8)

For bi-level thresholding, Otsu verified that the optimal threshold t* is chosen so
that the between-class variance σB

2 is maximized; that is,

t* = Arg Max {σB
2(t) }. (9)

1≤ t< L

The previous formula can be easily extended to multilevel thresholding of an image.
Assuming that there are M-1 thresholds, {t1, t2, …, tM-1}, which divide the original image
into M classes: C1 for [1,…, t1], C2 for [t1+1, …, t2], … , C

i
for [t i-1+1, …, t i], …, and CM

for [tM-1+1, …, L], the optimal thresholds {t1*, t2*, …, tM-1*} are chosen by maximizing
σB

2 as follows:

{t1*, t2*, …, tM-1*}= Arg Max {σB
2(t1, t2, …, tM-1)}, (10)

1≤ t1< …< tM-1< L

where σB
2= ∑

=

M

1k

ωk (µk-µT) 2, (11)

with

ωk = ∑
∈ kCi

pi , (12)

µk = ∑
∈ kCi

i p
i
/ω(k). (13)

The ωk in Eq. (12) is regarded as the zeroth-order cumulative moment of the kth
class Ck, and the numerator in Eq. (13) is regarded as the first-order cumulative moment
of the kth class Ck; that is,

µ(k) = ∑
∈ kCi

i p
i
. (14)

3. AN ALTERNATIVE FORMULATION FOR OTSU’S METHOD

Regardless of the number of classes being considered during the thresholding proc-
ess, the sum of the cumulative probability functions of M classes equals one, and the
mean of the image is equal to the sum of the means of M classes weighted by their cu-
mulative probabilities; that is

∑
=

M

1k

ωk = 1, (15)
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and

µT =∑
=

M

1k

ωkµk. (16)

Using Eqs. (15) and (16), the between-class variance in Eq. (11) of the thresholded
image can be rewritten as

σB
2(t1, t2, …, tM-1) = ∑

=

M

1k

ωk µ k
2 - µT

2. (17)

Because the second term in Eq. (17) is independent of the choice of the thresholds
{t1, t2, …, tM-1}, the optimal thresholds { t1*, t2*, …, tM-1*} can be chosen by maximizing
a modified between-class variance (σB’)2, defined as the summation term on the
right-hand side of Eq. (17). In other words, the optimal threshold values {t1*, t2*, …,
tM-1*} is chosen by

{t1*, t2*, …, tM-1*}= Arg Max { (σB’)2 {{ t1, t2, …, tM-1} } (18)

1≤ t1< …< tM-1< L

where (σB
’)2=∑

=

M

1k
ωk µk

2. (19)

According to the criteria of both Eq. (10) for σB
2 and (18) for (σB’)2 to find the op-

timal thresholds, the search range for the maximal σB
2 and the maximal (σB’)2 is 1 ≤ t

1
<

L-M+1, t1+1 ≤ t2< L-M+2, …, and tM-1+1 ≤ t M-1< (L-1), as shown in Fig. 1. This ex-
haustive search involves (L-M+1)M-1 possible combinations. Moreover, comparing Eq.
(19) with Eq. (11), we find that the subtraction in Eq. (11) is not necessary. Thus, Eq.
(19) is the better equation since it eliminates M (L-M+1)M-1 subtractions from the thresh-
old computations.

Fig. 1. Search range for {t1, t2, …, tM-1}.
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4. THE FAST ALGORITHM FOR MULTILEVEL OTSU’S METHOD

As mentioned previously, finding a modified between-class variance (σB’)2 using Eq.
(19) necessarily requires pre-computing the zeroth-order moment ωk and the first-order
moment µ(k) of the kth class. However, to obtain ωK and µ(k), 1 ≤ k ≤ M, requires
much iteration due to the summation in Eqs. (12) and (14). To further reduce the com-
putations, the u-v interval zeroth-order moment P(u, v) and the u-v interval first-order
moment S(u, v) of a class with gray levels from u to v are first defined as

P(u, v) =∑
=

V

1i
Pi , (20)

and

S(u, v) =∑
=

V

1i
i Pi (21)

For index u = 1, Eqs. (20) and (21) can be rewritten recursively as

P(1, v+1) = P(1, v) +pv+1 and P(1, 0)= 0, (22)

S(1, v+1) = S(1, v) + (v+1) pv+1 and S(1,0)= 0. (23)
where pv+1 is the probability of the gray level being v+1.

From Eqs. (20)-(23), it follows that

P(u, v) = P(1, v) - P(1, u-1) (24)
and

S(u, v) = S(1, v) - S(1, u-1). (25)

Eq. (12), ωk is computed as

ωk = ∑
∈ kCi

pi = ∑

+

k

i

t

1t
p

k
= ∑

k

i

t

1
p - ∑

1-k

i

t

1
p

Combining this with Eqs. (2) and (24), ωk can be written as

ωk = P(1, tk) - P(1, tk-1) = P(tk-1+1, tk). (26)

Similarly, µ(k) is given by

µ(k) = S(1, tk) - S(1, tk-1) = S(tk-1+1, tk). (27)

In Eqs. (26) and (27), note that t0 and tM are defined as t0=0 and tM =L, respectively.

For all possible intensities from u to v, the u-v interval zeroth-order moment P(u, v)
and u-v interval first-order moment S(u, v) of probability can be stored in look-up tables,
as shown in Table 1 and Table 2. The values in the first rows of the tables are determined
by using the recursive forms of P(1, v+1) and S(1, v+1) given in Eqs. (22) and (23).
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Table 1. The u-v interval zeroth-order moment P(u, v) for intensities u to v.

v
u

1 2 … i … L

1 P(1,1) P(1,2) P(1,i) P(1,L)
2 0 P(2,2) P(2,i) P(2,L)
… 0 0
i 0 0 0 P(i, i) P(i, L)

… 0 0 0 0
L 0 0 0 0 0 P(L,L)

Table 2. The u-v interval first-order moment S(u, v) for intensities u to v.

v
u

1 2 … i … L

1 S(1,1) S(1,2) S(1,i) S(1,L)
2 0 S(2,2) S(2,i) S(2,L)
… 0 0
i 0 0 0 S(i, i) S(i, L)

… 0 0 0 0
L 0 0 0 0 0 S(L,L)

The values in remaining other rows are determined from Eqs. (24) and (25). We can see
FROM Tables 1 and 2 that the computations of ωK and µ(k) can be obtained directly
through the use of look-up tables.

From the above description, we know that the possible thresholds {t1, t2, …, tM-1}
are the ranges 1 ≤ t1 < L-M+1, t1+1 ≤ t2 < L-M+2, …, and tM-1+1 ≤ tM-1 < (L-1). In
original method by Otsu, the computations of ωk and µ(k) are performed by Eqs. (12)
and (14) for each threshold {t1, t2, …, tM-1}, and the computation complexity is bounded
by O(L-M) additions. On the other hand, in our method the computations of ωK and
µ(k) are given by Eqs. (26) and (27), for the same threshold, and the computation com-
plexity is bounded by O(M) index operations. Thus, in the process of finding the opti-
mal multilevel threshold {t1*, t2*, …, tM-1*}, the computation complexities for ωk and
µ(k) are O((L-M)M) additions Eqs. (12) and (14) and O((L-M)M-1) index operations Eqs.
(26) and (27), respectively.

By using Tables 1 and 2, the computations required for ωk and µ(k) are significantly
reduced. However, to compute the k-th component (ωkµk

2
) of the modified be-

tween-class variance (σB’)2, we still need one division for computing µk and two multi-
plications for ωkµk

2, as shown in Eqs. (13), (14) and (19). Thus, the total computation
of {t1*, t2*, …, tM-1*} requires M(L-M+1)

M-1
divisions, 2M(L-M+1)

M-1
multiplications

and (M-1)(L-M+1)
M-1

additions for the summation of ωkµk
2, as shown in Table 3.

From Eqs. (19), (26) and (27), the modified between-class variance (σB
’)2 can be rewrit-

ten as

(σB
’)2(t1, t2, , ti ,…, tM-1) = H(1, t1)+ H(t1+1, t2) + ...+ H(tM-1+1, L), (28)
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where the modified between-class variance of class Ci is defined as

H(ti-1+1, ti) = S(ti-1+1, ti)
2 /P(ti-1+1, ti). (29)

Table 3. Computations required for Eq. (18) through index operations of Table P(u, v)
and Table S(u, v), and µµµµ

k
=µµµµ(k)/ωωωω(k).

any combination
(σB’)2

P Table S Table

ω(k) µ(k) µk ∑
=

M

1k

ω(k) µk
2

Total computation

Addition L L M-1 (M-1)(L-M+1) M-1+2L

Subtraction L(L-1)/2 L(L-1)/2 0 0 L(L-1)

multiplication L 2M 2M(L-M+1)M-1L

Division 0 M M(L-M+1) M-1

direct index M M 2M(L-M+1) M-1

Combinations 1 (L-M+1) M-1

Table 4. Computations required for Eq. (18) through index operations of Table H(u, v).

(σB’)2 P Table S Table H Table ∑
=

M

1k
H

(tk-1+1, tk)

Total computation

addition L L M-1 (M-1)(L-M+1)M-12L

subtraction L(L-1)/2 L(L-1)/2 0 0 L(L-1)

multiplication L 0 L

division 0 L(L+1) 0 L(L+1)

direct index M M(L-M+1) M-1

combinations 1 (L-M+1) M-1

With the aid of Table 1, Table 2 and Eq. (29), a look-up table H(u, v), 1 ≤ u ≤ v ≤ L,
can be created prior to computing the modified between-class variance (σB’)2. Then, us-
ing Eq. (29), for each possible threshold selection {t1, t2, …,tM-1}, the modified be-
tween-class variance (σB’)2 can be obtained through H(u, v) along with (M-1) additions.
Thus, the large number of multiplications and divisions in Eq. (18) can also be elimi-
nated. Table 4 lists the total computations for Eq. (18) by using H(u, v). It is from
Tables 3 and 4 clear that the maximum of (σB’)2 can be obtained by M(L-M+1)M-1 index
operations through H(u, v) instead of 2M(L-M+1)M-1 index operations through look-up
tables P(u, v) and S(u, v), M(L-M+1)M-1 division for µk and 2M(L-M+1)M-1 multiplica-
tions for ωkµk

2. Obviously employing look-up table H(u, v) is an efficient way to
compute the modified between-class variance (σB’)2. Furthermore, the more classes
required, the more time saved through indexing and the memory space for storing H(u, v)
is half that required for storing both P(u, v) and S(u, v). The memory space required for
storing H(u, v) is L(L+1)/2 units. Thus, using H(u, v) not only saves computation, but
also reduces the amount of memory needed.
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5. EXPERIMENTAL RESULTS

For evaluating the performance of our proposed method versus the conventional
Otsu’s method, four images (F16 jet, House, Lena and Peppers) are chosen; these are
shown in Fig. 2. All have 256 × 256 pixels with 256 gray level intensities. Fig. 3
shows their respective histograms. To implement Otsu’s method, we programmed Eqs.
(10) and (11), while our proposed method was implemented using Eqs. (18) and (28).
The algorithms are coded in Borland C Version 4.5 and are run on a 100 MHz Pentium II
personal computer, in Microsoft Windows 95 Operating system.

Table 5. Thresholds and computation times for the test images.

computation time

Otsu’s method
thresholds

with recursion
without recursion

proposed methodImages

2 3 4 5 2 3 4 5 2 3 4 5

F16 Jet 156 111
172

96
149
191

86
130
171
202

<1s
<1s

<1s
1s

5s
70s

6m
1h

<1s <1s 1s 37s

House 147 88
154

86
130
177

64
92

131
178

<1s
<1s

<1s
1s

6s
91s

7.5m
1. 5h

<1s <1s 1s 68s

Lena 101 77
145

56
106
159

46
83

119
164

<1s
<1s

<1s
2s

9s
166s

12.0m
2.5h

<1s <1s 1s 107s

Peppers 102 81
142

43
98

152

40
88

134
173

<1s
<1s

<1s
1s

7s
105s

8.5m
1. 7h

<1s <1s 1s 77s

The threshold selection values and computation time for the tested images are listed
in Table 5. Fig. 4 to 7 show the resulting images by the bi-level, tri-level, four-level
and five-level threshold selections respectively. Because time is measured in while
seconds, the true difference between our method and Otsu’s method is indistinguishable
for bi-level and tri-level cases. However, for the four-level selection, using the recur-
sive forms of ωk and µ(k) reduces the processing time from more than 70 seconds to less
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(a) F-16 Jet (b) House

(c) Lena (d) Peppers

Fig. 2. Test images.

than 9 seconds. Moreover, the time can be reduced to less than one second by using
look-up table H(u, v). For the five-level threshold selection, using the recursive forms
of ωk and µ(k) decreases the processing time from more than 1 hour to less than 12 min-
utes, and to less than 107 seconds when using H(u, v).

(a) (b)
Fig. 3. Histograms of test images.
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(C) (D)

(c) (d)

Fig. 3. (Cont’d) Histograms of test images.

(a) bi-level (b) tri-level

(c) four-level (d) five-level

Fig. 4. Thresholded images for Fig. 2(a).
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(a) bi-level (b) tri-level

(c) four-level (d) five-level

Fig. 5. Thresholded images for Fig. 2(b).

(a) bi-level (b) tri-level

Fig. 6. Thresholded images for Fig. 2(c).
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(c) four-level (d) five-level

Fig. 6. (Cont’d) Thresholded images for Fig. 2(c).

(a) bi-level (b) tri-level

(c) four-level (d) five-level

Fig. 7. Thresholded images for Fig. 2(d).



www.manaraa.com

PING-SUNG LIAO, TSE-SHENG CHEN AND PAU-CHOO CHUNG726

6. CONCLUSIONS

In this paper, a fast and efficient recursive algorithm along with a look-up table has
been developed for one-dimensional multilevel Otsu’s thresholding. This algorithm
maximizes a modified between-class variance (σB

’)2 instead of maximizing the
conventional between-class variance σB

2 as a criterion. For M multilevel threshold
selection, we showed that maximizing the modified between-class variance less
computation than maximizing the conventional between-class variance. The formulas
for ωk and µ(k) for the modified between-class variance are written in recursive form,
which reduces the complexity of computation for ωk and µ(k) combined from O(L-M)
additions to O(M) index operations. Moreover, determining ωkµ(k)2 by indexing in H(u,
v) is more efficient than that by applying arithmetic operations. For five-level threshold
selection, our experimental results show that the processing time of the look-up table H(u,
v) is less than 107 seconds, while the of conventional Otsu’s method with the recursive
forms for ωk and µ(k) takes more than six minutes, and without recursion, Otsu’s method
needs more than one hour. Thus, for image segmentation using thresholds derived from
maximizing between-class variance, our new algorithm is a significant improvement over
earlier methods.

It is also worth mentioning that our algorithm can be applied to other 1D multilevel
threshold selections, such as entropic thresholding [1, 7] and correlation measure [4],
whose criteria apparently have a recursive form.

REFERENCES
1. D. M. Tsai and Y. H. Chen, “A fast histogram-clustering approach for multilevel

thresholding,” Pattern Recognition Letters, Vol. 13, No. 4, 1992, pp. 245-252.
2. N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Transac-

tions on System Man Cybernetics, Vol. SMC-9, No. 1, 1979, pp. 62-66.
3. W. H. Tsai, “Moment-preserving thresholding: a new approach,” Computer Vision,

Graphics, and Image Processing, Vol. 29, 1985, pp. 377-393.
4. J. C.Yen, F. J.Chang, and S. Chang, “A new criterion for automatic multilevel thresh-

olding,” IEEE Transactions on Image Processing, Vol. 4, No. 3, 1995, pp. 370-378.
5. S. Wang and R. Haralick, “Automatic multithreshold selection,” Computer Vision,

Graphics, and Image Processing, Vol. 25, 1984, pp. 46-67.
6. P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. Chen, “A survey of thresholding tech-

niques,” Computer Vision Graphics Image Processing, Vol. 41, 1988, pp. 233-260.
7. T. Pun, “A new method for gray-level picture thresholding using the entropy of the

histogram,” Signal Processing, Vol. 2, 1980, pp. 223-237.
8. J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture

thresholding using the entropy of the histogram,” Computer Vision Graphics Image
Processing, Vol. 29, 1985, pp. 273-285.

9. S. U. Lee and S. Y. Chung, “A comparative performance study of several global
thresholding techniques for segmentation,” Computer Vision Graphics Image Proc-
essing, Vol. 52, 1990, pp. 171-190.

10. W. T. Chen, C. H. Wen, and C. W. Yang, “A fast two-dimensional entropic thresh-
olding algorithm,” Pattern Recognition, No. 27, No. 7, 1994, pp. 885-893.

11. J. Gong, L. Li, and W. Chen, “Fast recursive algorithms for two-dimensional thresh-
olding,” Pattern Recognition, Vol. 31, No. 3, 1998, pp. 295-300.

12. R. L. Kirby and A. Rosenfeld, “A note on the use of (gray, local average gray level)
space as an aid in thresholding selection,” IEEE Transactions on System Man Cyber-



www.manaraa.com

ALGORITHM FOR MULTILEVEL THRESHOLDING 727

netics Vol. SMC-9, No. 12, 1979, pp. 860-864.
13. A. S. Abutaleb, “Automatic thresholding of gray-level pictures using two-entropy,”

Computer Vision Graphics Image Processing, Vol. 47, 1989, pp. 22-32.
14. N. R. Pal and S. K. Pal, “Entropic thresholding,” Signal Processing, Vol. 16, 1989, pp.

97-108.
15. A. D. Brink, “Thresholding of digital images using two-dimensional entropies,” Pat-

tern Recognition, Vol. 25, No. 8, 1992, pp. 803-808.

Ping-Sung Liao (���) was born in Taiwan on 5 July 1958.
He received the B.S. degree from the Department of Engineering
Science of National Cheng Kung University in 1980, the M.S.
degree in electrical engineering from National Tsing Hua University
in 1985 and the Ph.D. degree from the Department of Engineering
Science of National Cheng Kung University in 1999. He has been
a lecturer at Cheng-Shiu Junior College of Technology and
Commerce since 1991. His research interests include image proc-
essing and graph theory.

Tse-Sheng Chen (���) was born in Taiwan on 20 March
1940. He received the B.S. and M.S. degrees in electrical
engineering from National Cheng Kung University in 1962 and
1968, the M.S. degree in computer science from State University of
New York at Stony Brook in 1972, and the Ph.D. degree in
computer science from Leeds University, United Kingdom, in 1992.
He joined the faculty of the Department of Engineering Science of
National Cheng Kung University in 1968 as a lecturer. He became
an Associate Professor in 1971. Since 1978, he has been a Full

Professor in the Department of Engineering Science of National Cheng Kung University.
From 1988 to 1993 he served as the director of the Information Center of the Hospital of
National Cheng Kung University. In 1993, he was a visiting professor at the Watson
Research Center of IBM Corporation. In 1994, he was a visiting professor in Leeds
University. His current research includes hospital information system and medical in-
formation processing.

Pau-Choo Chung (��	) received the B.S. and M.S. degrees
in electrical engineering from National Cheng Kung University,
Tainan, Taiwan, in 1981 and 1983, respectively, and the Ph.D. degree
in electrical engineering from Texas Tech University, Lubbock, in
1991. From 1983 to 1986, she was with the Chung Shan Institute of
Science and Technology, Taiwan. Since 1991, she has been with
Department of Electrical Engineering, National Cheng Kung
University, where she is currently a Full Professor. Her current
research includes neural networks and their application to medical
image processing, CT/MR image analysis, and mammography.


